翻訳と辞書 |
Loewner's torus inequality : ウィキペディア英語版 | Loewner's torus inequality
In differential geometry, Loewner's torus inequality is an inequality due to Charles Loewner. It relates the systole and the area of an arbitrary Riemannian metric on the 2-torus. ==Statement==
In 1949 Charles Loewner proved that every metric on the 2-torus satisfies the optimal inequality : where "sys" is its systole, i.e. least length of a noncontractible loop. The constant appearing on the right hand side is the Hermite constant in dimension 2, so that Loewner's torus inequality can be rewritten as : The inequality was first mentioned in the literature in .
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Loewner's torus inequality」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|